Towards Lehel's Conjecture for 4-Uniform Tight Cycles
نویسندگان
چکیده
A $k$-uniform tight cycle is a hypergraph with cyclic ordering of its vertices such that edges are all the sets size $k$ formed by consecutive in ordering.We prove every red-blue edge-coloured $K_n^{(4)}$ contains red and blue vertex-disjoint together cover $n-o(n)$ vertices. Moreover, we $K_n^{(5)}$ four monochromatic cycles
منابع مشابه
Packing Tight Hamilton Cycles in Uniform Hypergraphs
We say that a k-uniform hypergraph C is a Hamilton cycle of type `, for some 1 ≤ ` ≤ k, if there exists a cyclic ordering of the vertices of C such that every edge consists of k consecutive vertices and for every pair of consecutive edges Ei−1, Ei in C (in the natural ordering of the edges) we have |Ei−1 \ Ei| = `. We define a class of ( , p)-regular hypergraphs, that includes random hypergraph...
متن کاملTight Hamilton cycles in random uniform hypergraphs
In this paper we show that e/n is the sharp threshold for the existence of tight Hamilton cycles in random k-uniform hypergraphs, for all k ≥ 4. When k = 3 we show that 1/n is an asymptotic threshold. We also determine thresholds for the existence of other types of Hamilton cycles.
متن کاملThe Ramsey Number for 3-Uniform Tight Hypergraph Cycles
Let C (3) n denote the 3-uniform tight cycle, that is the hypergraph with vertices v1, . . . , vn and edges v1v2v3, v2v3v4, . . . , vn−1vnv1, vnv1v2. We prove that the smallest integer N = N(n) for which every red-blue coloring of the edges of the complete 3-uniform hypergraph with N vertices contains a monochromatic copy of C (3) n is asymptotically equal to 4n/3 if n is divisible by 3, and 2n...
متن کاملMonochromatic Hamiltonian 3-tight Berge cycles in 2-colored 4-uniform hypergraphs
Here improving on our earlier results we prove that there exists an n0 such that for n ≥ n0, in every 2-coloring of the edges of K n there is a monochromatic Hamiltonian 3-tight Berge cycle. This proves the c = 2, t = 3, r = 4 special case of a conjecture from [5].
متن کاملMinimum Vertex Degree Condition for Tight Hamiltonian Cycles in 3-uniform Hypergraphs
We show that every 3-uniform hypergraph with n vertices and minimum vertex degree at least p5{9` op1qq ` n 2 ̆ contains a tight Hamiltonian cycle. Known lower bound constructions show that this degree condition is asymptotically optimal. §
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Combinatorics
سال: 2023
ISSN: ['1077-8926', '1097-1440']
DOI: https://doi.org/10.37236/10604